DeepMindのAIがストラテジーゲーム『StarCraft II』のプロプレイヤーに圧勝、多方面での応用に期待がかかる

 Google傘下の英・人工知能(AI)企業DeepMindは24日(現地時間)、リアルタイムストラテジーゲーム『StarCraft II』のプレイヤーとして開発されたAIプログラム「AlphaStar」を発表した。

(画像はDeep Mind | AlphaStar: Mastering the Real-Time Strategy Game StarCraft IIより)

 ライブ配信の中で、昨年12月19日に実施されたプロプレイヤーとの試合を披露。Team Liquid所属のDario “TLO” Wunsch選手と、同所属で過去にメジャー大会で2度のチャンピオンに輝いたGrzegorz “MaNa” Komincz選手を相手に、5ゲームずつの計10試合が行われた。結果は10対0というAlphaStarの完封勝利。その後、機能に一部制限を設けた新バージョンで挑んだ生中継の試合では、MaNa選手による人間ならではの戦術に見事出し抜かれ、AlphaStarの戦績に初めて黒星が付いた。

 Blizzard Entertainmentが運営する『StarCraft』シリーズは、1998年から続く最古のeスポーツのひとつとして、欧州や韓国を筆頭に盛り上がってきた競技。そのゲーム性は、自軍が偵察によって得た視界しか見えないプレイヤー情報の非完全性や、リアルタイムストラテジーという非ターン制による時間の連続性、手駒の総数と種類の多さから生じる組み合わせの圧倒的な複雑さなど、過去にAIが人間を打ち破ったチェスや囲碁とは大きく異なる。こうした側面から、これまで『StarCraft』はAI研究者が容易に乗り越えられない巨大な壁として立ちはだかってきた。

(画像はDeep Mind | AlphaStar: Mastering the Real-Time Strategy Game StarCraft IIより)

 DeepMindが「AlphaStar League」と呼ぶプロセスでは、Blizzardが過去に公開した膨大な量のリプレイデータをニューラルネットワークに学習させることで、これらの課題を克服している。多様な人間のプレイデータをもとに生成された複数のエージェントでリーグを構成し、継続的に互いを対戦させることで段階的に戦略を洗練させていく強化学習だ。

 このリーグは14日間続き、毎試合ごとに新たな戦略的情報が生み出される。一連のプロセスが完了するまでに各エージェントが経験する試合数は、現実時間で200年分のプレイ時間に相当するという。

(画像はDeep Mind | AlphaStar: Mastering the Real-Time Strategy Game StarCraft IIより)

 特筆すべきは、AlphaStarのAPM(Action Per Minute、1分あたりのアクション数)が両選手を大きく下回っていた点だ。キーボードやマウスを操作するという物理的な制限がないボットは、一般的に毎分数千から数万という人間には到底不可能な操作量をこなせると言われている。それに対し人間のプレイヤーは、プロレベルでも平均して数百程度が限界である。

 今回の試合では、2人の選手が平均で390APM以上の数値を出す一方で、AlphaStarは277APMにとどまっている。また、状況判断からアクション入力までにかかるリアクション時間も、平均で350msと決して人間が及ばない領域とは言えない。これらはAlphaStarが人間のプレイを模倣することで学習した結果だという。

 今回の試合では、AlphaStar側に人間には真似できない大きな利点もあった。AlphaStarは、『StarCraft II』のゲームエンジンに直接アクセスすることで、マップ上のカメラを切り替えることなく、可視状態のユニット情報をすべて同時に把握できたのだ。

 一方で、人間のプレイヤーはマップ全体をひと目では見渡せないため、常にインターフェイス上のミニマップをクリックして部分的にズームすることで、視野を切り替えなくてはならない。DeepMindによると、カメラインターフェイスによる制限を設けた別バージョンも、学習段階での戦績ではさほど劣ることはなかったという。しかし、ライブイベントでの実戦では、MaNa選手に軍配があがる結果となった。

 このように、AlphaStarの勝因が必ずしも人間離れしたクリックレートやリアクション時間ではなかったことから、マクロおよびマイクロレベルでの戦略的判断でAIが人間を凌駕していることがうかがえる。こうした強化学習の恩恵による躍進は、2017年にMOBAタイトルの『Dota 2』で世界のトッププレイヤーを打ち負かしたOpen AIでも顕著だった。

 DeepMindによると、今回のAlphaStarプロジェクトで培われた技術は、天気予報や気候モデリング、言語理解といった分野での応用が想定できるという。また、学習メソッドの一部は、人工知能という技術の安全性を追求する上でも役に立つだろうと、AI研究全般における貢献の可能性に期待を寄せた。

ライター/Ritsuko Kawai

関連記事:

1987年に手動でディープラーニングをしていた驚異の麻雀ゲームがあった──アキバ通いのパソコン少年がゲーム アーツを創業──宮路洋一氏にゲームAIの核を聞く【聞き手:三宅陽一郎】

21世紀に“洋ゲー”でゲームAIが遂げた驚異の進化史。その「敗戦」から日本のゲーム業界が再び立ち上がるには?【AI開発者・三宅陽一郎氏インタビュー】

ライター
Ritsuko Kawai
ライター・ジャーナリスト。カナダで青春時代を過ごし、現地の大学で応用数学を専攻。帰国後は塾講師やホステスなど様々な職業を経て、ゲームメディアの編集者を経験。その後、独立して業界やジャンルを問わずフリーランスとして活動。趣味は料理とPCゲーム。ストラテジーゲームとコーヒーが大好き。
 
Twitter: @alice2501
  • このエントリーをはてなブックマークに追加

この記事に関するタグ

電ファミのDiscordでこの記事について語ろう!

SNSで話題の記事

新着記事

新着記事

ユーザー協賛プロジェクト

世界征服大作戦

電ファミの記事は協賛者の皆さまの支援によって成り立っています!

世界征服大作戦とは?

電ファミのファンクラブです。ゲームを中心にしながら、ひいてはマンガやアニメなど、エンタメ全般を扱うファンクラブへの成長を目指します。主要メンバーとして、元週刊少年ジャンプの編集長・Dr.マシリトこと鳥嶋和彦氏なども参加。面白いコンテンツによる世界征服を本気で企むコミュニティです。

詳しくはこちら

ピックアップ

連載・特集一覧

カテゴリ

関連サイト

その他

若ゲのいたり
榎本俊二の現代ゲーム用語大全

カテゴリーピックアップ

若ゲのいたり〜ゲームクリエイターの青春〜

若ゲのいたり〜ゲームクリエイターの青春〜の記事一覧